
An Algorithm for Finding Nearest Neighbours in Constant Average Time
With a Linear Space Complexity*

Luisa M i d , Jos6 Oncinal and Enrique Vidal2

IDepartamento de Sistemas Informfiticos y Computaci6n, Universidad de Alicante, Spain
2Departamento de Sistemas Inform5ticos y Computacih, Universidad Polit6cnica de Valencia, Spain

Abstract

Given a set of n points or "prototypes" and another
point or "test sample", we present a new algorithm that
finds a prototype that is a Nearest Neighbour of the test
sample, by computing only a constant number of
distances on the average. This is achieved through a
preprocessing procedure that computes only a number of
distances and uses an amount of memory that grow
lineally with n. The algorithm is an improvement of the
previously introduced AESA algorithm and, as such, does
not assume the data to be structured into a vector space,
making only use of the metric properties of the given
distance.

1: Introduction

Finding Nearest Neighbours (NN) with respect to a
certain dissimilarity measure or distance is a very usual
procedure in Pattern Recognition. A great number of
techniques have been introduced in the last few years to
minimize the number of distance computations, since, in
many cases of interest, such computations are very
expensive. These techniques generally rely upon two basic
properties: (1) Data can be adequately represented in a
suitable vector space, and then coordinates of the samples
are available; andlor (2) the dissimilarity measure is a
metric. The techniques that only make use of the metric
properties of the given distance are most interesting,
since, bei.ng more general, they can accommodate a wider
range of currently interesting Pattern Recognition
applications. One example of these applications is Isolated
Word Recognition [l]. All these techniques relie on a
preprocessing phase that permits reducing the average
computational expense of the search procedure to a
sublineal function of the number of reference samples or
prototypes. However, in general, they are not powerful

Work supported in part by the Spanish CICYT under
grant TIC 448189

enough when large sets of prototypes andlor costly
dissimilarity measures are involved.

Recently, Vidal [2] proposed the AESA
(Approximating and Eliminating Search Algorithm) that
makes use of: (1) efficient elimination rules and (2) an
appropriate search organization to allow maximum
efficiency of the available rules. For N prototypes, the
AESA makes use of a precomputed (by preprocessing)
triangular array of (N2-N)/2 distances between prototypes,
which permits carrying out the "-Search through a very
small number of distance computations. Furthermore, for
large N, this number of computations, tends to be
independent of N (asymptotic constant time-complexity).
However, the great storage complexity and preprocessing
time (O(N2)), severely limit the practical use of the
AESA for large sets of prototypes.

In this regard, one interesting recent contribution is the
one introduced by Ramasubramanian and Paliwal [3].
They use a "spherical distance coordinate" formulation,
where a vector in K-dimensional space is represented
uniquely by its distances from K+l fixed points. This fact
permits the use of a linear (rather than quadratic)
precomputed array of (K+ 1)*N distances between
prototypes, while keeping nearly unchanged the original,
highly efficient search strategy of the AESA.

However, as previously mentioned, there are many
problems of interest in Pattern Recognition, where the
data cannot be properly represented in a vectorial form, for
which these techniques cannot be applied. Nevertheless,
the original AESA does not have this limitation since it
only makes use of the metric properties of the
dissimilarity measure.

We propose here a new version of the AESA, called
LAESA (Linear AESA), which uses a linear array of
distances, like in [3] but is strictly based on metric
arguments like the original AESA. The procedure starts
by selecting from the given set of prototypes a relatively
small set, called "Base Prototypes" (BP), and computing
the distances between these BP's and the complete set of
prototypes. The choice of Base Prototypes and the
resulting LAESA algorithm are presented in the following

0-8186-2915492 $3.00 0 1992 IEEE

sections. Also, a number of simulation experiments are
reported to permit comparison with the original AESA.

2: Selection of Base Prototypes

The efficiency of the proposed search algorithm is
related both to the number of selected Base Prototypes and
to their emplacement. This last question was already
addressed in an early work by Marvin Shapiro [4], whose
results from computer simulations suggested that
significant improvements could be achieved by locating
reference points far away from data clusters.

Let E be the set from which all the samples are to
be drawn and let d:ExE--->R a dissimilarity measure
which is assumed to fulfill the metric properties. We have
adopted the following greedy strategy that tries to find a
set of M BP's that are maximally separated among the
given set of prototypes:

Algorithm BP-SELECTION
Input: P C E, M E N; //finire sei of proroiypes and number of BP 's / I
Output: B CP; // sei of Base Protoiypes //

D E 8lPlxlBI. // IPI .IBI inrerprotoiype disrances I/
Function d E x E ---> 8 // distance funciion / /

Variables: A E 8"'; // distance accumularor array 11
b, b' E P;
max E 8;

begin
b' := arbitrary-element(P); D := [O]; B := {b'}; A := [O];
while IBI < M do

max := 0; b := b';
for every p E P-B do

D[b,pl := d(b, p);
A[pl := A[pl + D[b,pl;
if (A[p] > max) then b' := p; max := A[p]; end-if

end-for
B := B U {b'};

end-while
end

While this procedure does not strictly guarantee the
optimality (maximum separation) of the resulting set of
BP's, i t requires only a linear processing time and usually
yields quite satisfactory results.

3: Searching Algorithm

The proposed algorithm performs both the search and
elimination strategies by using the array of distances
obtained by the preprocessing described above. The
principles of the algorithm are described below.

Like in the original AESA, the metric properties of
d:EkE--->R are used by the elimination and search rules of
the new algorithm. If q is a Base Prototype whose distance
from x has already been computed and n is a prototype

that is the current nearest neighbour of test sample x, the
triangle inequality of d can be applied to obtain the
following sufficient conditions for a prototype p not to be
closer to x than n:

(9
(4

d(p,q) 2 d(x,q) + d(x,n)
d(p,q) s d(x,q) - d(x,n)

or, equivalently,
I d(P4) - d(x,q) I 2 d(x,n) (1)

On the other hand, using the new formulation
introduced in [5], the approximation criterion used by
Vidal [13 for selecting candidate prototypes that are close
to the test vector x, becomes, in the case of Base
Prototypes, as follows:

(2) = argmin
V g S - U W)

with
G(p) = V!;;,, I d(p,u) - d(x,u) I

where Bu is the set of Base Prototypes used so far during
the searching procedure, P is the set of prototypes and U
is the set of eliminated prototypes.

Using this formulation, the inequality (1) can be used
to obtain the following sufficient condition for a
prototype p to be eliminated without risk of loosing the
true nearest neighbour:

Using (2) and (3) the algorithm LAESA, given below,
repeatedly performs five steps until all prototypes have
been eliminated. These steps are: Distance computing,
Updating the prototype nearest to x, Updating G,
Eliminating and Approximating. The first execution starts
with the computation of the distance from x to an
arbitrarily selected Base Prototype. On the basis of (2), the
Aproximation step successively selects non-eliminated
prototypes from B as long as certain conditions are met;
otherwise, a non-eliminated prototype from P-B is
selected. In the algorithm, the CHOICE function helps
deciding, depending on the conditions, wether a base or
non-base prototype is selected. Another function called
CONDITION is introduced to control the elimination of
BP's. These two functions, permit an easy introduction of
different strategies to manage the use and elimination of
Base Prototypes. As will be shown in the next section,
different behaviour of LAESA can be obtained for each of
these strategies. The "Updating G" step, is only executed
for Base Prototypes, since only for these prototypes are
distances to other prototypes available in the precomputed
matrix D.

558

Algorithm LAESA CONDITION = (IBul> IBll2)

Input' P C E ;
B C P ;

11 finite set of prototypes I/
/ I set of Base Prototypes I/

D E x I P l x l B l ;
x E E;

/ / precomputed IPI .IBI distances I1
I / test sample I/

Output: n E P; d* E 8 I / "prototype and its distance to x / I
FuncUon d E x E ---> A / I distance function I /
FuncUon CONDITION: Boolean / I controls elimination of BP's I /
Function CHOICE: Bx(P-B) + P // selection of a BP or non-BP /I

Vnrlnbles: p , q, s, b E P
G E R "
dxs. g p , gq, gb E 8

/ I lower h u n d array I/

w n
d*:= m; n:= indeterminate: G.= [O] ; s:= arbitrary-element(B);
while [PI >Odo

dxs:= d(x,s): F?= P-{s};
if dxs < d* then n:= s: d*:= dxs; end-if
q:= indeterminate; gq:= 00; b = indeterminate: gb= m;

for every p E P do

I / distance computing / I
/ I updating n, d* I/

I / eliminating and approximating loop I /
/ I updating G, ifpossible / I if sEBthen

end i f
g p : = G W ;
if p E B then

G[p l := max(G [p l , 1 D[p,sl-dxs 1)

I / eliminating from B / /

// approximating: selecting from B //
if (g p 2 d* & CONDITION) then P:= P-{p}
else

if g p q b then gb= gp; b:= p e n d i f
end-if

if g p 2 d* then P = P-{p};
else

end l f

else
/ I eliminating from P-B I/

/ I approximating: selecting from P-B / I
If g p q b then gq:= gp; q:= p end-if

end l f
end-for
s:= CHOICE(b. 9);

end-while
end

A number of different strategies for using and
eliminating Base Prototypes were studied in this work.
The implementation of the function CHOICE is the same
for all these strategies and simply consists of selecting a
BP whenever possible; that is:

CHOICE(b,q) =

On the other hand, the different implementations of
the function CONDITION are given hereafter, where "Bu"
stands for the set of Base Prototypes that have been used
(selected) in previous steps of the algorithm:

if b + indeterminate then b
else q end-if

a) EC1 llnever eliminate BP's explicitly11
CONDITION = false

b) EC2 llonly allow elimination of BP's after
having selected a number of prototypes greater than one
half of BII

c) EC3 llonly allow elimination of BP's after
having selected a number of prototypes greater than one
third of Bll

CONDITION = (IBul> lB113)

d) ECw llalways allow elimination of BP 'sll
CONDITION = true

e) ECELIM //allow elimination of BP's if the last

CONDITION = (no prototype was
selected prototype contributed no elimination11

eliminated in the previous step)

4: Results and discussion

The behaviour of the LAESA with the above BP
management strategies was tested in a serie of
experiments. A random set of 1024 prototypes was drawn
from a uniform distribution in the unit 6-dimensional
hypercube. With this set, the BP-selection algorithm was
repeatedly executed, yielding several sets of BP's of
different sizes. Then, another random set of 1000 test
samples was submitted to LAESA using the different BP
and management strategies. This procedure was repeated
10 times with different random number generator seeds.
The results averaged over the 10 executions are shown in
Fig. 1.

When all the prototypes are considered BPs, the
number of distance computations for both ECw and
ECELIM tends to be nearly the same as for the AESA.
Moreover, for the ECELIM strategy in particular, the
actual decision for a specific number of BP's is less
critical, since only rather negligible differences in
performance are observed for a very wide range in the
number of Base Prototypes.

60

0 20 40 60 80 100 120
number 01 base pmtaypen

Figure 1. Average number of distance computations for the
LAESA as a function of the number of Base Prototypes, for a random
set of 1024 6-dimensional prototype vectors using the Euclidean
Metric.

559

Using the first version (ECl), we have performed
some experiments to study how the number of distance
computations grows with the size of the prototype set [6].
The obtained results show that the average numbers of
distance computations both for the AESA and LAESA are
dramatically smaller than for other methods previously
proposed in the literature and, when the number of
prototypes is large enough, the performances tend to be
independent of this number in both cases (asymptotic
constant time complexity). Moreover, the average number
of distance computations required by LAESA tend to be
only less than 1.5 times that of the original AESA, while
space requirements were smaller by orders of magnitude.
The same experiments were repeated for different number
of BPs and varying dimensions. The results, displayed in
Fig. 2, suggest that both the "optimum" number of BP's
(that leading to the smallest number of distance
computations)and the average number of distance
computations tend to increase rapidly with the dimension.

400 I brute force/

/
I D=lO(IBl-48)

D=8 (IBI=24)

- - -

1 I
4 10 100 1000

number of prototypes

Figure 2. Average number of distance computations for LAESA
with ECI as a function of the number of prototypes and different
dimension, using de Euclidean Metric.

or "intrinsic dimension" of an (appropiate) object
representation does not generally lead to an increase in the
distances from test samples to prototypes[l]. Finally, we
performed other experiments to compare two choice for
the emplacement of BP's: randomly among the complete
set of prototypes and chosen through the greedy,
maximum separation procedure described in section 2. The
best results were achieved, as expected, with the second
method.

Although the results using the LAESA are not as
good when using AESA (1.3 times worse on the average),
the use of AESA entails a quadratic storage complexity,
whereas the storage complexity of the LAESA is linear.
Therefore the use of large sets of prototypes is not a
problem now.

5: References

[l] E. Vidal, H. Rulot, F. Casacuberta and J. Benedi,
"On the use of a metric-space search algorithm
(AESA) for fast DTW-bassed recognition of isolated
words", IEEE Transactions on Acoustics, Speech, and
Signal Processing., vol. 36, pp. 651-660, 1988.

[2] E. Vidal, "An algorithm for finding nearest
neighbours in (approximately) constant average time
complexity.", Pattern Recognition Letters, vol. 4,

[3] V. Ramasubramanian and K. K. Paliwal, "An
Efficient Approximation-Elimination Algorithm for
Fast Nearest-Neighbour Search Based on a Spherical
Distance Coordinate Formulation.", Signal
Processing V: Theories and Applications., pp. 1323-
1326, 1990.

[4] M. Shapiro, "The Choice of Reference Points in
Best-Match File Searching ." , Artificial
IntelligenceiLanguage Processing., vol. 20, pp. 339-
343, 1977.

[SI E. Vidal, "New farmulation and improvements of the
Nearest-Neighbour Approximating and Eliminating
Search Algorithm (AESA).", To be published, 1991.

[6] L. Mic6, J. Oncina and E. Vidal, "Algoritmo para
encontrar el vecino mas pr6ximo en un tiempo medio
constante con una complejidad espacial lineal", Tech.
Report DSIC III 14-91. Universidad PolitCcnica de
Valencia, 1991.

pp. 145-157, 1986.

This behaviour with uniformly distributed data is
the same observed for the AESA [2]. Therefore, as i t
happens with the AESA, this rapid increase is not actually
expected for real data, in which increasing the complexity

560

