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Abstract 

Given a set of n points or "prototypes" and another 
point or "test sample", we present a new algorithm that 
finds a prototype that is a Nearest Neighbour of the test 
sample, by computing only a constant number of 
distances on the average. This is achieved through a 
preprocessing procedure that computes only a number of 
distances and uses an amount of memory that grow 
lineally with n. The algorithm is an improvement of the 
previously introduced AESA algorithm and, as such, does 
not assume the data to be structured into a vector space, 
making only use of the metric properties of the given 
distance. 

1: Introduction 

Finding Nearest Neighbours (NN) with respect to a 
certain dissimilarity measure or distance is a very usual 
procedure in Pattern Recognition. A great number of 
techniques have been introduced in the last few years to 
minimize the number of distance computations, since, in 
many cases of interest, such computations are very 
expensive. These techniques generally rely upon two basic 
properties: (1) Data can be adequately represented in a 
suitable vector space, and then coordinates of the samples 
are available; andlor ( 2 )  the dissimilarity measure is a 
metric. The techniques that only make use of the metric 
properties of the given distance are most interesting, 
since, bei.ng more general, they can accommodate a wider 
range of currently interesting Pattern Recognition 
applications. One example of these applications is Isolated 
Word Recognition [l]. All these techniques relie on a 
preprocessing phase that permits reducing the average 
computational expense of the search procedure to a 
sublineal function of the number of reference samples or 
prototypes. However, in general, they are not powerful 
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enough when large sets of prototypes andlor costly 
dissimilarity measures are involved. 

Recently, Vidal [ 2 ]  proposed the AESA 
(Approximating and Eliminating Search Algorithm) that 
makes use of: (1) efficient elimination rules and (2) an 
appropriate search organization to allow maximum 
efficiency of the available rules. For N prototypes, the 
AESA makes use of a precomputed (by preprocessing) 
triangular array of (N2-N)/2 distances between prototypes, 
which permits carrying out the "-Search through a very 
small number of distance computations. Furthermore, for 
large N, this number of computations, tends to be 
independent of N (asymptotic constant time-complexity). 
However, the great storage complexity and preprocessing 
time (O(N2)), severely limit the practical use of the 
AESA for large sets of prototypes. 

In this regard, one interesting recent contribution is the 
one introduced by Ramasubramanian and Paliwal [3]. 
They use a "spherical distance coordinate" formulation, 
where a vector in K-dimensional space is represented 
uniquely by its distances from K+l fixed points. This fact 
permits the use of a linear (rather than quadratic) 
precomputed array of (K+ 1)*N distances between 
prototypes, while keeping nearly unchanged the original, 
highly efficient search strategy of the AESA. 

However, as previously mentioned, there are many 
problems of interest in Pattern Recognition, where the 
data cannot be properly represented in a vectorial form, for 
which these techniques cannot be applied. Nevertheless, 
the original AESA does not have this limitation since it 
only makes use of the metric properties of the 
dissimilarity measure. 

We propose here a new version of the AESA, called 
LAESA (Linear AESA), which uses a linear array of 
distances, like in [3] but is strictly based on metric 
arguments like the original AESA. The procedure starts 
by selecting from the given set of prototypes a relatively 
small set, called "Base Prototypes" (BP), and computing 
the distances between these BP's and the complete set of 
prototypes. The choice of Base Prototypes and the 
resulting LAESA algorithm are presented in the following 
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sections. Also, a number of simulation experiments are 
reported to permit comparison with the original AESA. 

2: Selection of Base Prototypes 

The efficiency of the proposed search algorithm is 
related both to the number of selected Base Prototypes and 
to their emplacement. This last question was already 
addressed in an early work by Marvin Shapiro [4], whose 
results from computer simulations suggested that 
significant improvements could be achieved by locating 
reference points far away from data clusters. 

Let E be the set from which all the samples are to 
be drawn and let d:ExE--->R a dissimilarity measure 
which is assumed to fulfill the metric properties. We have 
adopted the following greedy strategy that tries to find a 
set of M BP's that are maximally separated among the 
given set of prototypes: 

Algorithm BP-SELECTION 
Input: P C E, M E N; //finire sei of proroiypes and number of BP 's / I  
Output: B CP; // sei of Base Protoiypes // 

D E  8lPlxlBI. // IPI .IBI inrerprotoiype disrances I/ 
Function d E x E ---> 8 // distance funciion / /  

Variables: A E 8"'; // distance accumularor array 11 
b, b' E P; 
max E 8; 

begin 
b' := arbitrary-element(P); D := [O]; B := {b'}; A := [O]; 
while IBI < M do 

max := 0; b := b'; 
for every p E P-B do 

D[b,pl := d(b, p); 
A[pl := A[pl + D[b,pl; 
if (A[p] > max) then b' := p; max := A[p]; end-if 

end-for 
B := B U {b'}; 

end-while 
end 

While this procedure does not strictly guarantee the 
optimality (maximum separation) of the resulting set of 
BP's, i t  requires only a linear processing time and usually 
yields quite satisfactory results. 

3: Searching Algorithm 

The proposed algorithm performs both the search and 
elimination strategies by using the array of distances 
obtained by the preprocessing described above. The 
principles of the algorithm are described below. 

Like in the original AESA, the metric properties of 
d:EkE--->R are used by the elimination and search rules of 
the new algorithm. If q is a Base Prototype whose distance 
from x has already been computed and n is a prototype 

that is the current nearest neighbour of test sample x, the 
triangle inequality of d can be applied to obtain the 
following sufficient conditions for a prototype p not to be 
closer to x than n: 

(9 
( 4  

d(p,q) 2 d(x,q) + d(x,n) 
d(p,q) s d(x,q) - d(x,n) 

or, equivalently, 
I d(P4) - d(x,q) I 2 d(x,n) (1) 

On the other hand, using the new formulation 
introduced in [5],  the approximation criterion used by 
Vidal [ 13 for selecting candidate prototypes that are close 
to the test vector x, becomes, in the case of Base 
Prototypes, as follows: 

(2) = argmin 
V g S - U  W) 

with 
G(p) = V!;;,, I d(p,u) - d(x,u) I 

where Bu is the set of Base Prototypes used so far during 
the searching procedure, P is the set of prototypes and U 
is the set of eliminated prototypes. 

Using this formulation, the inequality (1) can be used 
to obtain the following sufficient condition for a 
prototype p to be eliminated without risk of loosing the 
true nearest neighbour: 

Using (2)  and (3) the algorithm LAESA, given below, 
repeatedly performs five steps until all prototypes have 
been eliminated. These steps are: Distance computing, 
Updating the prototype nearest to x, Updating G, 
Eliminating and Approximating. The first execution starts 
with the computation of the distance from x to an 
arbitrarily selected Base Prototype. On the basis of (2),  the 
Aproximation step successively selects non-eliminated 
prototypes from B as long as certain conditions are met; 
otherwise, a non-eliminated prototype from P-B is 
selected. In the algorithm, the CHOICE function helps 
deciding, depending on the conditions, wether a base or 
non-base prototype is selected. Another function called 
CONDITION is introduced to control the elimination of 
BP's. These two functions, permit an easy introduction of 
different strategies to manage the use and elimination of 
Base Prototypes. As will be shown in the next section, 
different behaviour of LAESA can be obtained for each of 
these strategies. The "Updating G" step, is only executed 
for Base Prototypes, since only for these prototypes are 
distances to other prototypes available in the precomputed 
matrix D. 
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Algorithm LAESA CONDITION = (IBul> IBll2) 

Input' P C  E ;  
B C  P ;  

11 finite set of prototypes I/ 
/ I  set of Base Prototypes I/ 

D E x I P l x l B l  ; 
x E E; 

/ /  precomputed IPI .IBI distances I1 
I /  test sample I/ 

Output: n E P; d* E 8 I /  "prototype and its distance to x / I  
FuncUon d E x E ---> A / I  distance function I /  
FuncUon CONDITION: Boolean / I  controls elimination of BP's I /  
Function CHOICE: Bx(P-B) + P // selection of a BP or non-BP /I 

Vnrlnbles: p ,  q, s, b E P 
G E R "  
dxs. g p ,  gq, gb E 8 

/ I  lower h u n d  array I/ 

w n  
d*:= m; n:= indeterminate: G.= [ O ] ;  s:= arbitrary-element(B); 
while [PI >Odo 

dxs:= d(x,s): F?= P-{s}; 
if dxs < d* then n:= s: d*:= dxs; end-if 
q:= indeterminate; gq:= 00; b =  indeterminate: gb= m; 

for every p E P do 

I /  distance computing / I  
/ I  updating n, d* I/ 

I /  eliminating and approximating loop I /  
/ I  updating G, ifpossible / I  if sEBthen  

end i f  
g p : =  G W ;  
if p E B  then 

G[p l :=  max( G [ p l ,  1 D[p,sl-dxs 1 ) 

I /  eliminating from B / /  

// approximating: selecting from B // 
if ( g p  2 d* & CONDITION ) then P:= P-{p} 
else 

if g p q b  then gb= gp; b:= p e n d i f  
end-if 

if g p  2 d* then P =  P-{p}; 
else 

end l f  

else 
/ I  eliminating from P-B I/ 

/ I  approximating: selecting from P-B / I  
If g p q b  then gq:= gp; q:= p end-if 

end l f  
end-for 
s:= CHOICE(b. 9); 

end-while 
end 

A number of different strategies for using and 
eliminating Base Prototypes were studied in this work. 
The implementation of the function CHOICE is the same 
for all these strategies and simply consists of selecting a 
BP whenever possible; that is: 

CHOICE(b,q) = 

On the other hand, the different implementations of 
the function CONDITION are given hereafter, where "Bu" 
stands for the set of Base Prototypes that have been used 
(selected) in previous steps of the algorithm: 

if b + indeterminate then b 
else q end-if 

a) EC1 llnever eliminate BP's explicitly11 
CONDITION = false 

b) EC2 llonly allow elimination of BP's after 
having selected a number of prototypes greater than one 
half of BII 

c) EC3 llonly allow elimination of BP's after 
having selected a number of prototypes greater than one 
third of Bll 

CONDITION = (IBul> lB113) 

d) ECw llalways allow elimination of BP 'sll 
CONDITION = true 

e) ECELIM //allow elimination of BP's if the last 

CONDITION = (no prototype was 
selected prototype contributed no elimination11 

eliminated in the previous step) 

4: Results and discussion 

The behaviour of the LAESA with the above BP 
management strategies was tested in a serie of 
experiments. A random set of 1024 prototypes was drawn 
from a uniform distribution in the unit 6-dimensional 
hypercube. With this set, the BP-selection algorithm was 
repeatedly executed, yielding several sets of BP's of 
different sizes. Then, another random set of 1000 test 
samples was submitted to LAESA using the different BP 
and management strategies. This procedure was repeated 
10 times with different random number generator seeds. 
The results averaged over the 10 executions are shown in 
Fig. 1. 

When all the prototypes are considered BPs, the 
number of distance computations for both ECw and 
ECELIM tends to be nearly the same as for the AESA. 
Moreover, for the ECELIM strategy in particular, the 
actual decision for a specific number of BP's is less 
critical, since only rather negligible differences in 
performance are observed for a very wide range in the 
number of Base Prototypes. 

60 

0 20 40 60 80 100 120 
number 01 base pmtaypen 

Figure 1. Average number of distance computations for the 
LAESA as a function of the number of Base Prototypes, for a random 
set of 1024 6-dimensional prototype vectors using the Euclidean 
Metric. 
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Using the first version (ECl), we have performed 
some experiments to study how the number of distance 
computations grows with the size of the prototype set [6]. 
The obtained results show that the average numbers of 
distance computations both for the AESA and LAESA are 
dramatically smaller than for other methods previously 
proposed in the literature and, when the number of 
prototypes is large enough, the performances tend to be 
independent of this number in both cases (asymptotic 
constant time complexity). Moreover, the average number 
of distance computations required by LAESA tend to be 
only less than 1.5 times that of the original AESA, while 
space requirements were smaller by orders of magnitude. 
The same experiments were repeated for different number 
of BPs and varying dimensions. The results, displayed in 
Fig. 2, suggest that both the "optimum" number of BP's 
(that leading to the smallest number of distance 
computations)and the average number of distance 
computations tend to increase rapidly with the dimension. 

400 I brute force/ 

/ 
I D=lO(IBl-48) 

D=8 (IBI=24) 

- - - 

1 I 
4 10 100 1000 

number of prototypes 

Figure 2. Average number of distance computations for LAESA 
with ECI as a function of the number of prototypes and different 
dimension, using de Euclidean Metric. 

or "intrinsic dimension" of an (appropiate) object 
representation does not generally lead to an increase in the 
distances from test samples to prototypes[l]. Finally, we 
performed other experiments to compare two choice for 
the emplacement of BP's: randomly among the complete 
set of prototypes and chosen through the greedy, 
maximum separation procedure described in section 2. The 
best results were achieved, as expected, with the second 
method. 

Although the results using the LAESA are not as 
good when using AESA (1.3 times worse on the average), 
the use of AESA entails a quadratic storage complexity, 
whereas the storage complexity of the LAESA is linear. 
Therefore the use of large sets of prototypes is not a 
problem now. 
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This behaviour with uniformly distributed data is 
the same observed for the AESA [2]. Therefore, as i t  
happens with the AESA, this rapid increase is not actually 
expected for real data, in which increasing the complexity 
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